skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Olson, William"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A major cause of chronic kidney disease (CKD) is glomerular disease, which can be attributed to a spectrum of podocyte disorders. Podocytes are non-proliferative, terminally differentiated cells. Thus, the limited supply of primary podocytes impedes CKD research. Differentiation of human pluripotent stem cells (hPSCs) into podocytes has the potential to produce podocytes for disease modeling, drug screening, and cell therapies. In the podocyte differentiation process described here, hPSCs are first induced to primitive streak-like cells by activating canonical Wnt signaling. Next, these cells progress to mesoderm precursors, proliferative nephron progenitors, and eventually become mature podocytes by culturing in a serum-free medium. Podocytes generated via this protocol adopt podocyte morphology, express canonical podocyte markers, and exhibit podocyte phenotypes, including albumin uptake and TGF-β1 triggered cell death. This study provides a simple, defined strategy to generate podocytes forin vitromodeling of podocyte development and disease or for cell therapies. 
    more » « less
  2. Summary The remaining value within end‐of‐use/life hard disk drives (EoU/L HDDs) is often not optimally recovered. The improper collection and recovery of HDDs contribute not only to rising environmental and social concerns worldwide, but also to the transformation of the economy and a significant loss of value. Currently, the most preferred treatment option for used hard drives is to recover the metals with the highest recycling effectiveness, such as steel and aluminum, via a shredding‐based recycling process that results in both value and material leakages. The complexity of retrieving the remaining values within EoU/L HDDs demands a larger view of the global supply of HDDs available for recovery. The aim of this paper is to first identify the geographical patterns of transboundary global shipments of new and used HDDs between developing and developed regions, and then capture and quantify the value leakage by bringing several unique perspectives. Two analyses have been conducted. First, the loss of value due to the insufficient recovery of neodymium (Nd) at the global level is quantified. Second, the value leakage as a result of the delay on on‐time reuse of HDDs is captured. Furthermore, the central challenges toward proper recovery of HDDs, where consumer electronic industry can make significant contributions, have been identified. HDDs are well positioned to contribute important insights to the recovery of other electronic devices, so the findings from HDDs can be adopted for other types of electronics. 
    more » « less